Track notebooks & scripts

This guide explains how to use track() & finish() to track notebook & scripts along with their inputs and outputs. For tracking pipelines, see: Pipelines – workflow managers.

# !pip install 'lamindb[jupyter]'
!lamin init --storage ./test-track
Hide code cell output
 initialized lamindb: testuser1/test-track

Track a notebook or script

Call track() to register your notebook or script as a transform and start tracking inputs & outputs of a run.

import lamindb as ln

ln.track()  # initiate a tracked notebook/script run

# your code

ln.finish()  # mark run as finished, save execution report, source code & environment

Here is how a notebook with run report looks on the hub.

Explore it here.

Assign a uid to a notebook or script

If you want to retain one version history when renaming notebooks and scripts, pass a uid to ln.track(), e.g.

ln.track("9priar0hoE5u0000")

To obtain a uid value, copy it from the logging statement (Transform('9priar0hoE5u0000')) when running ln.track() a first time without passing a uid.

Load a notebook or script

On the hub, search or filter the transform page and then load a script or notebook on the CLI. For example,

lamin load https://lamin.ai/laminlabs/lamindata/transform/13VINnFk89PE

Query a notebook or script

You find your notebooks and scripts in the Transform registry (along with pipelines & functions). Run stores executions. You can use all usual ways of querying to obtain one or multiple transform records, e.g.:

transform = ln.Transform.get(key="my_analyses/my_notebook.ipynb")
transform.source_code  # source code
transform.latest_run.report  # report of latest run
transform.latest_run.environment  # environment of latest run
transform.runs  # all runs

Sync scripts with git

To sync with your git commit, add the following line to your script:

ln.settings.sync_git_repo = <YOUR-GIT-REPO-URL>
synced-with-git.py
import lamindb as ln

ln.settings.sync_git_repo = "https://github.com/..."
ln.track()
# your code
ln.finish()
You’ll now see the GitHub emoji clickable on the hub.

Track parameters

In addition to tracking source code, run reports & environments, you can easily track run parameters.

Track run parameters

Before tracking parameter values, you need to define valid parameters, e.g.:

import lamindb as ln

ln.Param(name="input_dir", dtype="str").save()
ln.Param(name="learning_rate", dtype="float").save()
ln.Param(name="preprocess_params", dtype="dict").save()
Hide code cell output
 connected lamindb: testuser1/test-track
Param(name='preprocess_params', dtype='dict', created_by_id=1, space_id=1, created_at=2025-01-17 14:18:40 UTC)

Upon running the below script without those parameters defined, you’ll get a ValidationError from which you can copy & paste the definitions.

run-track-with-params.py
import argparse
import lamindb as ln

if __name__ == "__main__":
    p = argparse.ArgumentParser()
    p.add_argument("--input-dir", type=str)
    p.add_argument("--downsample", action="store_true")
    p.add_argument("--learning-rate", type=float)
    args = p.parse_args()
    params = {
        "input_dir": args.input_dir,
        "learning_rate": args.learning_rate,
        "preprocess_params": {
            "downsample": args.downsample,  # nested parameter names & values in dictionaries are not validated
            "normalization": "the_good_one",
        },
    }
    ln.track(params=params)

    # your code

    ln.finish()

Run the script.

!python scripts/run-track-with-params.py  --input-dir ./mydataset --learning-rate 0.01 --downsample
Hide code cell output
 connected lamindb: testuser1/test-track
 created Transform('NAaD8u4dztnD0000'), started new Run('IfRNPIpW...') at 2025-01-17 14:18:43 UTC
→ params: input_dir=./mydataset, learning_rate=0.01, preprocess_params={'downsample': True, 'normalization': 'the_good_one'}
 finished Run('IfRNPIpW') after 0d 0h 0m 1s at 2025-01-17 14:18:45 UTC

Query by run parameters

Query for all runs that match a certain parameters:

ln.Run.params.filter(
    learning_rate=0.01, input_dir="./mydataset", preprocess_params__downsample=True
).df()
Hide code cell output
uid name started_at finished_at reference reference_type _is_consecutive _status_code space_id transform_id report_id _logfile_id environment_id initiated_by_run_id created_at created_by_id _aux _branch_code
id
1 IfRNPIpWDjGkiP8zzoKV None 2025-01-17 14:18:43.941273+00:00 2025-01-17 14:18:45.516051+00:00 None None None 0 1 1 2 None 1 None 2025-01-17 14:18:43.941330+00:00 1 None 1

Note that:

  • preprocess_params__downsample=True traverses the dictionary preprocess_params to find the key "downsample" and match it to True

  • nested keys like "downsample" in a dictionary do not appear in Param and hence, do not get validated

Access parameters of a run

Below is how you get the parameter values that were used for a given run.

run = ln.Run.params.filter(learning_rate=0.01).order_by("-started_at").first()
run.params.get_values()
Hide code cell output
{'input_dir': './mydataset',
 'learning_rate': 0.01,
 'preprocess_params': {'downsample': True, 'normalization': 'the_good_one'}}
Here is how it looks on the hub.
image

Explore all parameter values

If you want to query all parameter values across all runs, use ParamValue.

ln.core.ParamValue.df(include=["param__name", "created_by__handle"])
Hide code cell output
value hash space_id param__name created_by__handle
id
1 ./mydataset None 1 input_dir testuser1
2 0.01 None 1 learning_rate testuser1
3 {'downsample': True, 'normalization': 'the_goo... None 1 preprocess_params testuser1

Manage notebook templates

A notebook acts like a template upon using lamin load to load it. Consider you run:

lamin load https://lamin.ai/account/instance/transform/Akd7gx7Y9oVO0000

Upon running the returned notebook, you’ll automatically create a new version and be able to browse it via the version dropdown on the UI.

Additionally, you can:

  • label using ULabel, e.g., transform.ulabels.add(template_label)

  • tag with an indicative version string, e.g., transform.version = "T1"; transform.save()

Saving a notebook as an artifact

Sometimes you might want to save a notebook as an artifact. This is how you can do it:

lamin save template1.ipynb --key templates/template1.ipynb --description "Template for analysis type 1" --registry artifact
Hide code cell content
assert run.params.get_values() == {
    "input_dir": "./mydataset",
    "learning_rate": 0.01,
    "preprocess_params": {"downsample": True, "normalization": "the_good_one"},
}

# clean up test instance
!rm -r ./test-track
!lamin delete --force test-track
 deleting instance testuser1/test-track